Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.357
Filtrar
1.
Arch Microbiol ; 206(5): 230, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38649511

RESUMO

During the past few decades, a wealth of knowledge has been made available for the transcription machinery in bacteria from the structural, functional and mechanistic point of view. However, comparatively little is known about the homooligomerization of the multisubunit M. tuberculosis RNA polymerase (RNAP) enzyme and its functional relevance. While E. coli RNAP has been extensively studied, many aspects of RNAP of the deadly pathogenic M. tuberculosis are still unclear. We used biophysical and biochemical methods to study the oligomerization states of the core and holoenzymes of M. tuberculosis RNAP. By size exclusion chromatography and negative staining Transmission Electron Microscopy (TEM) studies and quantitative analysis of the TEM images, we demonstrate that the in vivo reconstituted RNAP core enzyme (α2ßß'ω) can also exist as dimers in vitro. Using similar methods, we also show that the holoenzyme (core + σA) does not dimerize in vitro and exist mostly as monomers. It is tempting to suggest that the oligomeric changes that we see in presence of σA factor might have functional relevance in the cellular process. Although reported previously in E. coli, to our knowledge we report here for the first time the study of oligomeric nature of M. tuberculosis RNAP in presence and absence of σA factor.


Assuntos
Proteínas de Bactérias , RNA Polimerases Dirigidas por DNA , Mycobacterium tuberculosis , Multimerização Proteica , Mycobacterium tuberculosis/enzimologia , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/química , RNA Polimerases Dirigidas por DNA/metabolismo , RNA Polimerases Dirigidas por DNA/química , RNA Polimerases Dirigidas por DNA/genética , Holoenzimas/química , Holoenzimas/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Microscopia Eletrônica de Transmissão , Fator sigma/metabolismo , Fator sigma/química , Fator sigma/genética , Cromatografia em Gel
2.
PLoS Genet ; 20(3): e1011142, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38457455

RESUMO

Succinate is a potent immune signalling molecule that is present in the mammalian gut and within macrophages. Both of these infection niches are colonised by the pathogenic bacterium Salmonella enterica serovar Typhimurium during infection. Succinate is a C4-dicarboyxlate that can serve as a source of carbon for bacteria. When succinate is provided as the sole carbon source for in vitro cultivation, Salmonella and other enteric bacteria exhibit a slow growth rate and a long lag phase. This growth inhibition phenomenon was known to involve the sigma factor RpoS, but the genetic basis of the repression of bacterial succinate utilisation was poorly understood. Here, we use an experimental evolution approach to isolate fast-growing mutants during growth of S. Typhimurium on succinate containing minimal medium. Our approach reveals novel RpoS-independent systems that inhibit succinate utilisation. The CspC RNA binding protein restricts succinate utilisation, an inhibition that is antagonised by high levels of the small regulatory RNA (sRNA) OxyS. We discovered that the Fe-S cluster regulatory protein IscR inhibits succinate utilisation by repressing the C4-dicarboyxlate transporter DctA. Furthermore, the ribose operon repressor RbsR is required for the complete RpoS-driven repression of succinate utilisation, suggesting a novel mechanism of RpoS regulation. Our discoveries shed light on the redundant regulatory systems that tightly regulate the utilisation of succinate. We speculate that the control of central carbon metabolism by multiple regulatory systems in Salmonella governs the infection niche-specific utilisation of succinate.


Assuntos
Proteínas de Bactérias , Ácido Succínico , Animais , Proteínas de Bactérias/metabolismo , Ácido Succínico/metabolismo , Salmonella typhimurium/genética , Succinatos/metabolismo , Carbono/metabolismo , Fator sigma/genética , Fator sigma/metabolismo , Regulação Bacteriana da Expressão Gênica , Mamíferos/metabolismo
3.
PLoS Genet ; 20(3): e1011059, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38466775

RESUMO

RpoS is an alternative sigma factor needed for the induction of the general stress response in many gammaproteobacteria. Tight regulation of RpoS levels and activity is required for bacterial growth and survival under stress. In Escherichia coli, various stresses lead to higher levels of RpoS due to increased translation and decreased degradation. During non-stress conditions, RpoS is unstable, because the adaptor protein RssB delivers RpoS to the ClpXP protease. RpoS degradation is prevented during stress by the sequestration of RssB by anti-adaptors, each of which is induced in response to specific stresses. Here, we examined how the stabilization of RpoS is reversed during recovery of the cell from stress. We found that RpoS degradation quickly resumes after recovery from phosphate starvation, carbon starvation, and when transitioning from stationary phase back to exponential phase. This process is in part mediated by the anti-adaptor IraP, known to promote RpoS stabilization during phosphate starvation via the sequestration of adaptor RssB. The rapid recovery from phosphate starvation is dependent upon a feedback loop in which RpoS transcription of rssB, encoding the adaptor protein, plays a critical role. Crl, an activator of RpoS that specifically binds to and stabilizes the complex between the RNA polymerase and RpoS, is also required for the feedback loop to function efficiently, highlighting a critical role for Crl in restoring RpoS basal levels.


Assuntos
Proteínas de Escherichia coli , Escherichia coli , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Retroalimentação , Fator sigma/genética , Fator sigma/metabolismo , Fosfatos/metabolismo , Regulação Bacteriana da Expressão Gênica
4.
Physiol Plant ; 176(2): e14263, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38528669

RESUMO

Application of cyanobacteria for bioproduction, bioremediation and biotransformation is being increasingly explored. Photoautotrophs are carbon-negative by default, offering a direct pathway to reducing emissions in production systems. More robust and versatile host strains are needed for constructing production strains that would function as efficient and carbon-neutral cyanofactories. We have tested if the engineering of sigma factors, regulatory units of the bacterial RNA polymerase, could be used to generate better host strains of the model cyanobacterium Synechocystis sp. PCC 6803. Overexpressing the stress-responsive sigB gene under the strong psbA2 promoter (SigB-oe) led to improved tolerance against heat, oxidative stress and toxic end-products. By targeting transcription initiation in the SigB-oe strain, we could simultaneously activate a wide spectrum of cellular protective mechanisms, including carotenoids, the HspA heat shock protein, and highly activated non-photochemical quenching. Yellow fluorescent protein was used to test the capacity of the SigB-oe strain to produce heterologous proteins. In standard conditions, the SigB-oe strain reached a similar production as the control strain, but when cultures were challenged with oxidative stress, the production capacity of SigB-oe surpassed the control strain. We also tested the production of growth-rate-controlled host strains via manipulation of RNA polymerase, but post-transcriptional regulation prevented excessive overexpression of the primary sigma factor SigA, and overproduction of the growth-restricting SigC factor was lethal. Thus, more research is needed before cyanobacteria growth can be manipulated by engineering RNA polymerase.


Assuntos
RNA Polimerases Dirigidas por DNA , Synechocystis , RNA Polimerases Dirigidas por DNA/genética , Synechocystis/genética , Fator sigma/genética , Fator sigma/metabolismo , Proteínas de Choque Térmico , Carbono , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo
5.
Proc Natl Acad Sci U S A ; 121(13): e2400584121, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38502707

RESUMO

When faced with starvation, the bacterium Bacillus subtilis transforms itself into a dormant cell type called a "spore". Sporulation initiates with an asymmetric division event, which requires the relocation of the core divisome components FtsA and FtsZ, after which the sigma factor σF is exclusively activated in the smaller daughter cell. Compartment-specific activation of σF requires the SpoIIE phosphatase, which displays a biased localization on one side of the asymmetric division septum and associates with the structural protein DivIVA, but the mechanism by which this preferential localization is achieved is unclear. Here, we isolated a variant of DivIVA that indiscriminately activates σF in both daughter cells due to promiscuous localization of SpoIIE, which was corrected by overproduction of FtsA and FtsZ. We propose that the core components of the redeployed cell division machinery drive the asymmetric localization of DivIVA and SpoIIE to trigger the initiation of the sporulation program.


Assuntos
Bacillus subtilis , Proteínas de Bactérias , Bacillus subtilis/metabolismo , Ativação Transcricional , Proteínas de Bactérias/metabolismo , Esporos Bacterianos/genética , Esporos Bacterianos/metabolismo , Divisão Celular/genética , Fator sigma/genética , Fator sigma/metabolismo
6.
Nature ; 627(8003): 424-430, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38418874

RESUMO

Mycobacterium tuberculosis (Mtb) is a bacterial pathogen that causes tuberculosis (TB), an infectious disease that is responsible for major health and economic costs worldwide1. Mtb encounters diverse environments during its life cycle and responds to these changes largely by reprogramming its transcriptional output2. However, the mechanisms of Mtb transcription and how they are regulated remain poorly understood. Here we use a sequencing method that simultaneously determines both termini of individual RNA molecules in bacterial cells3 to profile the Mtb transcriptome at high resolution. Unexpectedly, we find that most Mtb transcripts are incomplete, with their 5' ends aligned at transcription start sites and 3' ends located 200-500 nucleotides downstream. We show that these short RNAs are mainly associated with paused RNA polymerases (RNAPs) rather than being products of premature termination. We further show that the high propensity of Mtb RNAP to pause early in transcription relies on the binding of the σ-factor. Finally, we show that a translating ribosome promotes transcription elongation, revealing a potential role for transcription-translation coupling in controlling Mtb gene expression. In sum, our findings depict a mycobacterial transcriptome that prominently features incomplete transcripts resulting from RNAP pausing. We propose that the pausing phase constitutes an important transcriptional checkpoint in Mtb that allows the bacterium to adapt to environmental changes and could be exploited for TB therapeutics.


Assuntos
Regulação Bacteriana da Expressão Gênica , Mycobacterium tuberculosis , RNA Bacteriano , Transcriptoma , RNA Polimerases Dirigidas por DNA/metabolismo , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/metabolismo , RNA Bacteriano/análise , RNA Bacteriano/biossíntese , RNA Bacteriano/genética , Transcriptoma/genética , Tuberculose/microbiologia , RNA Mensageiro/análise , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , Sítio de Iniciação de Transcrição , Fator sigma/metabolismo , Ribossomos/metabolismo , Biossíntese de Proteínas
7.
J Biol Chem ; 300(3): 105764, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38367670

RESUMO

In Mycobacterium smegmatis, the transcriptional activity of the alternative sigma factor SigF is posttranslationally regulated by the partner switching system consisting of SigF, the anti-SigF RsbW1, and three anti-SigF antagonists (RsfA, RsfB, and RsbW3). We previously demonstrated that expression of the SigF regulon is strongly induced in the Δaa3 mutant of M. smegmatis lacking the aa3 cytochrome c oxidase, the major terminal oxidase in the respiratory electron transport chain. Here, we identified and characterized the RsfSR two-component system involved in regulating the phosphorylation state of the major anti-SigF antagonist RsfB. RsfS (MSMEG_6130) is a histidine kinase with the cyclase/histidine kinase-associated sensing extracellular 3 domain at its N terminus, and RsfR (MSMEG_6131) is a receiver domain-containing protein phosphatase 2C-type phosphatase that can dephosphorylate phosphorylated RsfB. We demonstrated that phosphorylation of RsfR on Asp74 by RsfS reduces the phosphatase activity of RsfR toward phosphorylated RsfB and that the cellular abundance of the active unphosphorylated RsfB is increased in the Δaa3 mutant relative to the WT strain. We also demonstrated that the RsfSR two-component system is required for induction of the SigF regulon under respiration-inhibitory conditions such as inactivation of the cytochrome bcc1 complex and aa3 cytochrome c oxidase, as well as hypoxia, electron donor-limiting, high ionic strength, and low pH conditions. Collectively, our results reveal a key regulatory element involved in regulating the SigF signaling system by monitoring the state of the respiratory electron transport chain.


Assuntos
Proteínas de Bactérias , Complexo IV da Cadeia de Transporte de Elétrons , Mycobacterium smegmatis , Fator sigma , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Transporte de Elétrons , Complexo IV da Cadeia de Transporte de Elétrons/genética , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Regulação Bacteriana da Expressão Gênica , Histidina Quinase/genética , Histidina Quinase/metabolismo , Mycobacterium smegmatis/enzimologia , Mycobacterium smegmatis/genética , Monoéster Fosfórico Hidrolases/metabolismo , Fator sigma/genética , Fator sigma/metabolismo
8.
Microbiol Spectr ; 12(4): e0230323, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38411953

RESUMO

Pseudomonas aeruginosa is an opportunistic pathogen, which causes chronic infections, especially in cystic fibrosis (CF) patients where it colonizes the lungs via the build-up of biofilms. Tobramycin, an aminoglycoside, is often used to treat P. aeruginosa infections in CF patients. Tobramycin at sub-minimal inhibitory concentrations enhances both biofilm biomass and thickness in vitro; however, the mechanism(s) involved are still unknown. Herein, we show that tobramycin increases the expression and activity of SigX, an extracytoplasmic sigma factor known to be involved in the biosynthesis of membrane lipids and membrane fluidity homeostasis. The biofilm enhancement by tobramycin is not observed in a sigX mutant, and the sigX mutant displays increased membrane stiffness. Remarkably, the addition of polysorbate 80 increases membrane fluidity of sigX-mutant cells in biofilm, restoring the tobramycin-enhanced biofilm formation. Our results suggest the involvement of membrane fluidity homeostasis in biofilm development upon tobramycin exposure.IMPORTANCEPrevious studies have shown that sub-lethal concentrations of tobramycin led to an increase biofilm formation in the case of infections with the opportunistic pathogen Pseudomonas aeruginosa. We show that the mechanism involved in this phenotype relies on the cell envelope stress response, triggered by the extracytoplasmic sigma factor SigX. This phenotype was abolished in a sigX-mutant strain. Remarkably, we show that increasing the membrane fluidity of the mutant strain is sufficient to restore the effect of tobramycin. Altogether, our data suggest the involvement of membrane fluidity homeostasis in biofilm development upon tobramycin exposure.


Assuntos
Infecções por Pseudomonas , Tobramicina , Humanos , Tobramicina/farmacologia , Pseudomonas aeruginosa , Fluidez de Membrana , Fator sigma/genética , Fator sigma/metabolismo , Antibacterianos/farmacologia , Antibacterianos/metabolismo , Infecções por Pseudomonas/tratamento farmacológico , Biofilmes , Homeostase
9.
FEMS Microbiol Rev ; 48(2)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38383636

RESUMO

Promoter sequences are important genetic control elements. Through their interaction with RNA polymerase they determine transcription strength and specificity, thereby regulating the first step in gene expression. Consequently, they can be targeted as elements to control predictability and tuneability of a genetic circuit, which is essential in applications such as the development of robust microbial cell factories. This review considers the promoter elements implicated in the three stages of transcription initiation, detailing the complex interplay of sequence-specific interactions that are involved, and highlighting that DNA sequence features beyond the core promoter elements work in a combinatorial manner to determine transcriptional strength. In particular, we emphasize that, aside from promoter recognition, transcription initiation is also defined by the kinetics of open complex formation and promoter escape, which are also known to be highly sequence specific. Significantly, we focus on how insights into these interactions can be manipulated to lay the foundation for a more rational approach to promoter engineering.


Assuntos
RNA Polimerases Dirigidas por DNA , Transcrição Gênica , Regiões Promotoras Genéticas/genética , Transcrição Gênica/genética , RNA Polimerases Dirigidas por DNA/genética , RNA Polimerases Dirigidas por DNA/metabolismo , Regulação da Expressão Gênica , DNA , Fator sigma/genética , Fator sigma/metabolismo
10.
mSphere ; 9(2): e0071923, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38236030

RESUMO

The Gram-positive model organism Bacillus subtilis responds to environmental stressors by activating the alternative sigma factor σB. The sensing apparatus upstream of σB activation is thought to consist of cytoplasmic stressosomes-megadalton-sized protein complexes that include five paralogous proteins known as RsbRs. The RsbRs are presumed to be involved in stress sensing and the subsequent response. Perturbations to the RsbR complement in stressosomes by engineering cells that produce only one of the RsbR paralogs ("single-RsbR strains") lead to altered σB response dynamics with respect to timing and magnitude. Here, we asked whether such changes to σB response dynamics impact the relative fitness of a strain. We competed strain pairs with different RsbR complements under ethanol and sodium chloride stress and found not only differences in relative fitness among wild-type and single-RsbR strains but also different relative fitness values in the two different stressors. We found that the presence of RsbRA, which dominates the wild-type σB response, enhances fitness in ethanol but is detrimental to fitness in NaCl. Meanwhile, RsbRD-only cells were among the most fit in NaCl. Strains producing hybrid RsbR fusion proteins displayed different fitness values that depended on the RsbR proteins from which they were derived. Our results here suggest that σB response dynamics can impact fitness, highlighting the physiological importance of the unusual stressosome-based general stress response system of B. subtilis. IMPORTANCE: The model bacterium Bacillus subtilis uses cytoplasmic multiprotein complexes, termed stressosomes, to activate the alternative sigma factor σB when facing environmental stresses. We have previously shown that genetically manipulating the complement of putative sensor proteins in stressosomes can alter the dynamics of the σB response in terms of its magnitude and timing. However, it is unknown whether these response dynamics impact the fitness of cells challenged by environmental stressors. Here, we examine the fitness of strains with different σB responses by competing strain pairs in exponential-phase co-cultures under environmental stress. We find that strains with different response dynamics show different competitive indices that differ by stressor. These results suggest that the dynamics of the σB response can affect the fitness of cells facing environmental stress, highlighting the relevance of different σB dynamics.


Assuntos
Bacillus subtilis , Fator sigma , Fator sigma/genética , Fator sigma/metabolismo , Bacillus subtilis/metabolismo , Cloreto de Sódio , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Fosfoproteínas , Etanol
11.
Mol Microbiol ; 121(2): 291-303, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38169053

RESUMO

Pseudomonas aeruginosa is an important opportunistic pathogen. Several of its virulence-related processes, including the synthesis of pyocyanin (PYO) and biofilm formation, are controlled by quorum sensing (QS). It has been shown that the alternative sigma factor RpoS regulates QS through the reduction of lasR and rhlR transcription (encoding QS regulators). However, paradoxically, the absence of RpoS increases PYO production and biofilm development (that are RhlR dependent) by unknown mechanisms. Here, we show that RpoS represses pqsE transcription, which impacts the stability and activity of RhlR. In the absence of RpoS, rhlR transcript levels are reduced but not the RhlR protein concentration, presumably by its stabilization by PqsE, whose expression is increased. We also report that PYO synthesis and the expression of pqsE and phzA1B1C1D1E1F1G1 operon exhibit the same pattern at different RpoS concentrations, suggesting that the RpoS-dependent PYO production is due to its ability to modify PqsE concentration, which in turn modulates the activation of the phzA1 promoter by RhlR. Finally, we demonstrate that RpoS favors the expression of Vfr, which activates the transcription of lasR and rhlR. Our study contributes to the understanding of how RpoS modulates the QS response in P. aeruginosa, exerting both negative and positive regulation.


Assuntos
Percepção de Quorum , Fator sigma , Percepção de Quorum/genética , Fator sigma/genética , Fator sigma/metabolismo , Pseudomonas aeruginosa/metabolismo , Biofilmes , Piocianina , Óperon , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica
12.
ACS Synth Biol ; 13(1): 402-407, 2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38176073

RESUMO

Expanding sigma70 promoter libraries can support the engineering of metabolic pathways and enhance recombinant protein expression. Herein, we developed an artificial intelligence (AI) and knowledge-based method for the rational design of sigma70 promoters. Strong sigma70 promoters were identified by using high-throughput screening (HTS) with enhanced green fluorescent protein (eGFP) as a reporter gene. The features of these strong promoters were adopted to guide promoter design based on our previous reported deep learning model. In the following case study, the obtained strong promoters were used to express collagen and microbial transglutaminase (mTG), resulting in increased expression levels by 81.4% and 33.4%, respectively. Moreover, these constitutive promoters achieved soluble expression of mTG-activating protease and contributed to active mTG expression in Escherichia coli. The results suggested that the combined method may be effective for promoter engineering.


Assuntos
Inteligência Artificial , Escherichia coli , Escherichia coli/genética , Escherichia coli/metabolismo , RNA Polimerases Dirigidas por DNA/genética , Fator sigma/genética , Fator sigma/metabolismo , Regiões Promotoras Genéticas/genética
13.
Nat Struct Mol Biol ; 31(1): 141-149, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38177674

RESUMO

Gene expression in Escherichia coli is controlled by well-established mechanisms that activate or repress transcription. Here, we identify CedA as an unconventional transcription factor specifically associated with the RNA polymerase (RNAP) σ70 holoenzyme. Structural and biochemical analysis of CedA bound to RNAP reveal that it bridges distant domains of ß and σ70 subunits to stabilize an open-promoter complex. CedA does so without contacting DNA. We further show that cedA is strongly induced in response to amino acid starvation, oxidative stress and aminoglycosides. CedA provides a basal level of tolerance to these clinically relevant antibiotics, as well as to rifampicin and peroxide. Finally, we show that CedA modulates transcription of hundreds of bacterial genes, which explains its pleotropic effect on cell physiology and pathogenesis.


Assuntos
Proteínas de Escherichia coli , Fatores Genéricos de Transcrição , Escherichia coli/metabolismo , Fator sigma/química , Fator sigma/genética , Fator sigma/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteínas de Escherichia coli/metabolismo , RNA Polimerases Dirigidas por DNA/metabolismo , Fatores Genéricos de Transcrição/genética , Fatores Genéricos de Transcrição/metabolismo , Transcrição Gênica , Proteínas de Bactérias/metabolismo
14.
Proc Natl Acad Sci U S A ; 121(2): e2309670120, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38170755

RESUMO

Gene transcription is a fundamental cellular process carried out by RNA polymerase (RNAP). Transcription initiation is highly regulated, and in bacteria, transcription initiation is mediated by sigma (σ) factors. σ recruits RNAP to the promoter DNA region, located upstream of the transcription start site (TSS) and facilitates open complex formation, where double-stranded DNA is opened up into a transcription bubble and template strand DNA is positioned inside RNAP for initial RNA synthesis. During initial transcription, RNAP remains bound to σ and upstream DNA, presumably with an enlarging transcription bubble. The release of RNAP from upstream DNA is required for promoter escape and processive transcription elongation. Bacteria sigma factors can be broadly separated into two classes with the majority belonging to the σ70 class, represented by the σ70 that regulates housekeeping genes. σ54 forms a class on its own and regulates stress response genes. Extensive studies on σ70 have revealed the molecular mechanisms of the σ70 dependent process while how σ54 transitions from initial transcription to elongation is currently unknown. Here, we present a series of cryo-electron microscopy structures of the RNAP-σ54 initial transcribing complexes with progressively longer RNA, which reveal structural changes that lead to promoter escape. Our data show that initially, the transcription bubble enlarges, DNA strands scrunch, reducing the interactions between σ54 and DNA strands in the transcription bubble. RNA extension and further DNA scrunching help to release RNAP from σ54 and upstream DNA, enabling the transition to elongation.


Assuntos
Escherichia coli , Transcrição Gênica , Microscopia Crioeletrônica , Escherichia coli/genética , Escherichia coli/metabolismo , Regiões Promotoras Genéticas/genética , RNA Polimerases Dirigidas por DNA/metabolismo , DNA/metabolismo , RNA/metabolismo , Bactérias/metabolismo , Fator sigma/metabolismo , DNA Bacteriano/metabolismo
15.
J Bacteriol ; 206(2): e0035523, 2024 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-38197669

RESUMO

In Escherichia coli, one of the best understood microorganisms, much can still be learned about the basic interactions between transcription factors and promoters. When a cAMP-deficient cya mutant is supplied with maltose as the main carbon source, mutations develop upstream from the two genes malT and sdaC. Here, we explore the regulation of the two promoters, using fluorescence-based genetic reporters in combination with both spontaneously evolved and systematically engineered cis-acting mutations. We show that in the cya mutant, regulation of malT and sdaC evolves toward cAMP-independence and increased expression in the stationary phase. Furthermore, we show that the location of the cAMP receptor protein (Crp) binding site upstream of malT is important for alternative sigma factor usage. This provides new insights into the architecture of bacterial promoters and the global interplay between Crp and sigma factors in different growth phases.IMPORTANCEThis work provides new general insights into (1) the architecture of bacterial promoters, (2) the importance of the location of Class I Crp-dependent promoters, and (3) the global interplay between Crp and sigma factors in different growth phases.


Assuntos
Proteínas de Escherichia coli , Escherichia coli , Proteínas de Bactérias/metabolismo , Proteína Receptora de AMP Cíclico/genética , Proteína Receptora de AMP Cíclico/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Regulação Bacteriana da Expressão Gênica , Mutação , Fator sigma/genética , Fator sigma/metabolismo , Transcrição Gênica
16.
J Gen Appl Microbiol ; 69(4): 215-228, 2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-37380492

RESUMO

When Bacillus subtilis cells face environmental deterioration, such as exhaustion of nutrients and an increase in cell density, they form spores. It is known that phosphorylation of Spo0A and activation of σH are key events at the initiation of sporulation. However, the initiation of sporulation is an extremely complicated process, and the relationship between these two events remains to be elucidated. To determine the minimum requirements for triggering sporulation initiation, we attempted to induce cell sporulation at the log phase, regardless of nutrients and cell density. In rich media such as Luria-Bertani (LB) medium, the cells of B. subtilis do not sporulate efficiently, possibly because of excess nutrition. When the amount of xylose in the LB medium was limited, σH -dependent transcription of the strain, in which sigA was under the control of the xylose-inducible promoter, was induced, and the frequency of sporulation was elevated according to the decreased level of σA. We also employed a fusion of sad67, which codes for an active form of Spo0A, and the IPTG-inducible promoter. The combination of lowered σA expression and activated Spo0A allowed the cells in the log phase to stop growing and rush into spore development. This observation of enforced initiation of sporulation in the mutant strain was detected even in the presence of the wild-type strain, suggesting that only intracellular events initiate and fulfill spore development regardless of extracellular conditions. Under natural sporulation conditions, the amount of σA did not change drastically throughout growth. Mechanisms that sequester σA from the core RNA polymerase and help σH to become active exist, but this has not yet been elucidated.


Assuntos
Bacillus subtilis , Fatores de Transcrição , Bacillus subtilis/genética , Fatores de Transcrição/genética , Fator sigma/genética , Fator sigma/metabolismo , Xilose , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Esporos Bacterianos/genética , Regulação Bacteriana da Expressão Gênica , Transcrição Gênica
17.
Mol Microbiol ; 121(2): 167-195, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37908155

RESUMO

Legionella pneumophila is a gram-negative bacteria found in natural and anthropogenic aquatic environments such as evaporative cooling towers, where it reproduces as an intracellular parasite of cohabiting protozoa. If L. pneumophila is aerosolized and inhaled by a susceptible person, bacteria may colonize their alveolar macrophages causing the opportunistic pneumonia Legionnaires' disease. L. pneumophila utilizes an elaborate regulatory network to control virulence processes such as the Dot/Icm Type IV secretion system and effector repertoire, responding to changing nutritional cues as their host becomes depleted. The bacteria subsequently differentiate to a transmissive state that can survive in the environment until a replacement host is encountered and colonized. In this review, we discuss the lifecycle of L. pneumophila and the molecular regulatory network that senses nutritional depletion via the stringent response, a link to stationary phase-like metabolic changes via alternative sigma factors, and two-component systems that are homologous to stress sensors in other pathogens, to regulate differentiation between the intracellular replicative phase and more transmissible states. Together, we highlight how this prototypic intracellular pathogen offers enormous potential in understanding how molecular mechanisms enable intracellular parasitism and pathogenicity.


Assuntos
Legionella pneumophila , Humanos , Legionella pneumophila/genética , Legionella pneumophila/metabolismo , Virulência , Fator sigma/metabolismo , Proteínas de Bactérias/metabolismo
18.
Bioorg Chem ; 143: 106983, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38016396

RESUMO

RNA polymerase is an essential enzyme involved in bacterial transcription, playing a crucial role in RNA synthesis. However, it requires the association with sigma factors to initiate this process. In our previous work, we utilized a structure-based drug discovery approach to create benzoyl and benzyl benzoic acid compounds. These compounds were designed based on the amino acid residues within the key binding site of sigma factors, which are crucial for their interaction with RNA polymerase. By inhibiting bacterial transcription, these compounds exhibited notable antimicrobial activity, and we coined them as sigmacidins to highlight their resemblance to sigma factors and the benzoic acid structure. In this study, we further modified the compound scaffolds and developed a series of sulfonamidyl benzoic acid derivatives. These derivatives displayed potent antimicrobial activity, with minimum inhibitory concentrations (MICs) as low as 1 µg/mL, demonstrating their efficacy against bacteria. Furthermore, these compounds demonstrated low cytotoxicity, indicating their potential as safe antimicrobial agents. To ascertain their mechanism of action in interfering with bacterial transcription, we conducted biochemical and cellular assays. Overall, this study showcases the effectiveness of sulfonamidyl benzoic acid derivatives as antimicrobial agents by targeting protein-protein interactions involving RNA polymerase and sigma factors. Their strong antimicrobial activity and low cytotoxicity implicate their potential in combating antibiotic-resistant bacteria.


Assuntos
Antibacterianos , Anti-Infecciosos , Antibacterianos/farmacologia , Antibacterianos/química , Fator sigma/metabolismo , RNA Polimerases Dirigidas por DNA/metabolismo , Bactérias/metabolismo , Ácido Benzoico/farmacologia , Testes de Sensibilidade Microbiana
19.
Int J Biol Macromol ; 254(Pt 1): 127833, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37918595

RESUMO

Vibrio species are motile gram-negative bacteria commonly found in aquatic environments. Vibrio species include pathogenic as well as non-pathogenic strains. Pathogenic Vibrio species have been reported in invertebrates and humans, whereas non-pathogenic strains are involved in symbiotic relationships with their eukaryotic hosts. These bacteria are also able to adapt to fluctuations in temperature, salinity, and pH, in addition to oxidative stress, and osmotic pressure in aquatic ecosystems. Moreover, they have also developed protective mechanisms against the immune systems of their hosts. Vibrio species accomplish adaptation to changing environments outside or inside the host by altering their gene expression profiles. To this end, several sigma factors specifically regulate gene expression, particularly under stressful environmental conditions. Moreover, other sigma factors are associated with biofilm formation and virulence as well. This review discusses different types of sigma and anti-sigma factors of Vibrio species involved in virulence and regulation of gene expression upon changes in environmental conditions. The evolutionary relationships between sigma factors with various physiological roles in Vibrio species are also discussed extensively.


Assuntos
Fator sigma , Vibrio , Humanos , Fator sigma/genética , Fator sigma/metabolismo , Ecossistema , Vibrio/metabolismo , Estresse Oxidativo , Virulência/genética , Regulação Bacteriana da Expressão Gênica
20.
J Biol Chem ; 300(2): 105568, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38103640

RESUMO

Upon Mg2+ starvation, a condition often associated with virulence, enterobacteria inhibit the ClpXP-dependent proteolysis of the master transcriptional regulator, σs, via IraM, a poorly understood antiadaptor that prevents RssB-dependent loading of σs onto ClpXP. This inhibition results in σs accumulation and expression of stress resistance genes. Here, we report on the structural analysis of RssB bound to IraM, which reveals that IraM induces two folding transitions within RssB, amplified via a segmented helical linker. These conformational changes result in an open, yet inhibited RssB structure in which IraM associates with both the C-terminal and N-terminal domains of RssB and prevents binding of σs to the 4-5-5 face of the N-terminal receiver domain. This work highlights the remarkable structural plasticity of RssB and reveals how a stress-specific RssB antagonist modulates a core stress response pathway that could be leveraged to control biofilm formation, virulence, and the development of antibiotic resistance.


Assuntos
Proteínas de Escherichia coli , Modelos Moleculares , Fatores de Transcrição , Endopeptidase Clp/metabolismo , Escherichia coli/química , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Fosforilação , Ligação Proteica , Domínios Proteicos , Dobramento de Proteína , Estrutura Terciária de Proteína , Fator sigma/metabolismo , Fatores de Transcrição/química , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...